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Software Voting in Asynchronous
NMR Computer Structures

1. Introduction

Modern computer systems are being used in environments that require increased reliability due to the
naturc of the tasks being performed.  For example. future avionics computers will replace the mechanical
control of present aircraft.  ‘The computers will make thousands of decisions per second concerning the
stability of the aircraft. The system must be designed so that the computer will never fail in flight, since the
stability decisions can not be made by the pilot. In many cascs. the required reliability is being obtained by
replicating hardware components, and comparing the outputs of the compenents to determine the correct
result.  The replication allows the system to tolerate failures in components without affecting the system

reliability.

Onc technique used to improve the system reliability is to replicate the hardware an odd number of times.
and to compare the outputs of the modules to determine whether a majority of the modules agree. [f a
majority do agree. then this output is assumed to be the correct output. ‘The comparison to determine a
majority is called voting. The system that performs the comparison on the module outputs is called a voter. If
the hardware is replicated three times, then the system has Triple Modular Redundancy (TMR). The
genceralization of TMR is N-Modular Redundancy (NMR), in which cach module is replicated N times, and
all N outputs are voted on to determine the correct output. Figure 1-1 shows a TMR system with four
modules.  The total number of modules and voters required for TMR is 3-(smumber of modules +

number of communication paths).

Triple Modular Redundancy is a useful technique to mask failures in a system. One module can fail
completely in a TMR system and the output of the system should not be affected. The number of redundant
modules can be increased if the system reliability must be increased. The system reliability can therefore be
incrcased by simply incrcasing the redundancy. The cost of this replication can be high. The ideal system
performance of N processors is N times the performance of one processor. In a NMR system, though. all the
processors are performing the same task, so the throughput is the same as for onc processor. In fact, the
performance will be worse than that of onc procassor because some overhead will be associated with the
voting, thercby reducing the system throughput. The added reliability is exchanged for increased system cost
and decrcascd throughput. Some applications require extremely reliable systems, so the only option is NMR.

Many modern computer systems use some type of replication to increase reliability.

In N-modular-redundancy (NMR), the redundant modules arc often computer-memory pairs. The
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# Processes = 3x( # Nodes + # Arcs)
Figure 1-1: Non-redundant Four Module System and Associated TMR System

computers communicate information to be voted on cither by hardware voters [11], or by software voters
running on the processors [4] [9]. Software voting has a number of distinct advantages over hardware voting.
one of which is the flexibility of the voter. For example. the Software Implemented Fault Tolerant computer
(SIFT) (3]}, has a voter that can handle a S-way vote, or a 3-way vote. The system can determine which voter
to usc depending on the number of processors available. The software voter routine can be modified as the
system changes in order to improve the system reliabity. Other rcliability improvement features such as
dynamic reconfiguration can be casily implemented in software. and have been shown to improve system
rcliability [6] [14]. Most of the rescarch on NMR redundancy has made the assumption that the modules are
synchronized [1]. Since it is very difficult to force processors to be tightly synchronized. this assumption does
not hold for a large class of systems. Some rescarchers are beginning to realize that asynchronous systems
offer distinct advantages in reliability [9] and simplicity. The problem remains though of how to design an

asynchronous system that mects the reliability objectives.

A general purpose multiprocessor called Cm® was used to experiment with NMR computer systems {S].

Cm* has an operating system named Mecdusa that provides primitives for cxperimentation, and an
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experimental interactive synthetic workloud gencrator that provides an environment conducive to monitoring

t:’
{
b
l

i

Cm* performance. Cm* is a 30 processor (DEC 1.S1-11s) multiprocessor connected by a hierarchical,

distributed switching structure.  Each processor is connected 1o a lecal memory o form a Computer medule

W 3 verd

called a Cm. The processor is connceted to the lucal memory by a switch called an Slocal, The Cmi's are

connected together into clusters by a high speed bus. A high speed microprogrammable bus controller, a

Kmap, controls access to this packet switched bus, as well as providing access to other Kmaps, and their

k.

associated clusters. The Kmaps are cach connected to other Kmaps by two intercluster busses. Al Cms can 'J

4

access all the memory in Cm™* through the Slocals and the Kmaps. The memory reference hicrarchy consists ; :

of local references, intracluster references, and intercluster references. :;

The Medusa Operating System is < nessage based, object oriented operating system designed to exploit the "

architecture of Cm* [10]. [t was designed with modularity, robustness, and performance in mind. The 4

. ~ . . . . g ~ - -~ - "‘
functions of the operating system are partitioned into Task Forces which are sets of closely ceoperating '

parallel processes. The processes can communicate via messages passed through a communication medium ]

O U
.

called a pipe. Medusa provides for Conditional sid Uncenditicnz! Sends and Receives. Al data in Medusa is
stored in systern defined objects. Objects can be accessed through private or shared descriptors. {he Xmap
and the Slocal cooperate to convert a descriptor into a physical address. Operating system functions such as
message comnmunication, address mapping, interrupt handling, activity multiplexing, and mutual exclusion

are performed by the Kmap microcode.

The synthetic workload generator (SWG) [13] is a tool running under Medusa that provides a controllable,
interactive experimentation environment for Cm*. The SWG provides a user interface that allows interactive
experimentation. The SWG allows the user to vary experimental parameters at runtime, so that experimental
data can be collected easily. All experiments for the SWG are represented as a data flow graph. Processes are
represented as nodes of the graph. The communication of information is over arcs on the graph. Buffers are
used to store messages being passed between nodes. The synthetic workload is made up of repetitions of
operations from a library of actions. The actions are designed to simulate real operations. Various control
structures supported by the SWG facilitate the starting and stopping of experiments. The SWG and the data

flow model were used in the experiments described in Scctions 4 and S.

This paper is divided into six sections. Scction 1 provided an overview of the field of highly reliable
systems, a justification for the work presented, and an overview of the rescarch vehicle and tools used during
the research. Section 2 introduces the concepts involved in voting, including synchronization issucs, voting
frequency, and voted data. Section 3 presents the experimental paradigm. The types of voters used in the
experiments are also described. A serics of experiments that describe the voting overhead in a TMR software

voting system arc presented in Scction 4. A theorctical framework is developed for a voting overhead model,

- b caty . s e TR W T e ik ki Xl e e Vet e s e -




4 Introduction

and experimental results are compared to results predicted by the model, Scection § presents cxperiments
designed to explore how closely synchronized voting systems must remain,  Variation in process execution
speed 18 used to determine how much asynchrony is acceptable in NMR systems. The results of the
cxperiments yield some guidelines for designing asynchronous NMR systems.  An analysis of the
synchronization data is also presented. Fquations are developed that can predict the amount of variation in
process execution speed that is acceplable for reliable system operation. A queuing theory model is
developed to describe the voter-subtask relationship. The results predicted by the model arc compared to the

actual experimentat cesults,

2. Voting Concepts

This scction is concerned with giving an overview of voting systems and with presenting the issucs involved
in voting. ‘I'riple Modular Redundancy ('MR) was first proposed in 1956 by von Neumann {15]. Since that
ume. TMR systems have been built and evaluated [2] [7] [14] (161 [17]. Technigues have been used to improve
the reliability of TMR systems, and some of these technigues are presented below.  In addition. some new

concepts that relate particularly to sottware voting arc presented.

The design of redundant systems is intended to improve their reliability by replicating a module .V times.
and comparing the outputs of the .V modules. The comparison should take the .V module outputs. and choose
the most likely output as the actual output. The comparison has taken many forms over the years. but a
simplc majority vote is the most popu]ar'. A majority (| V/2+ 1)) of the modules must agree on a value for a
particular output. Since most computer systems usc a binary representation for the data, the voter simply

needs to compare the data bit-by-bit.

In an NMR system. if only one voter is used to determing the correct module output, then the failure of the
voter becomes a catastrophic cvent. The voter is called a single point of failure. If the voter, however. is also
replicated .V times then the single point of failure has been removed. The systems considered in this report
are all NMR with no single points of failure. generally with V=3 (I'MR). Systems that are TMR with no
single points of falurc can mask a single permanent, intzrmittent, or transient crror in cither the voters or the

modulcs.

If the modules to be replicated are software modules, then cach module can exccute on its own processor,
concurrent with the exccution of other modules. The replicated modules that arce exccuting the same task are
not necessarily exccuting at the same time. The replicated modules will have completely separate code and
data, so they can be called space redundant. In addition, the modules can exccute at different times, which is

called time skew redundancy. If the system uscs time skew redundancy, then the system may be able to




r—————-—-——-——-——-—————m -

Voting Concepts 5

olerate multiple tailures at one time, since the talures will atfect different computavonal tasks. In a TMR

svstem, three simultanreous futlures could be wlerated if the system was both time skew and space redundant,

and no more errors occur untl the voters correct the three faults.

In order to vote on the outputs of modules, the voters must have some knowledge of when the outputs
become valid. Since the modules may have different clocks, the voters must be able to wait for modules to
prepare outputs. betore voting on them. Baven if the modules have the same clock (which would be a single
point of failure. so should probably be avoided). clock skew and differences in logic delay would introduce
the need for the voters to wait for the outputs to all become valid. The wait time ¢ould be implicit. as in SIFT,
such that the vote occurs at a predetermined tme (if the module cannot produce the output in time, then the
vote proceeds without that output). Conversely, the wait can be explicit. as in the Cm* voting experiments
presented in Sections 4 and 5. such that the soter waits for a signal from the module indicating the output’s
validity. In the case of explicit waiting. the voter should not wait indefinitely for the module t signal. since
the moedule may fail in such a way as to never produce the signal. The voter should, in this case. have a
time-out (0 present indefinite warting., Two types of time-outs are possible. A module external to the voter
could interrupt the voter after a period of time. This requires a clock to determine the time, so is called a
clock driven time-out. The second possibility is an event-driven time out. A number of possible events could

trigger a time-out. but in the experiments in Scctions 4 and S the time-out occurs after the voter receives n

messages from one module without receiving any messages from another module.

When the module outputs become valid a voter can determine the majority. and gencrate its own output
called the voted output. The point in time when the module outputs all become valid is called a point of
synchronization. sincc the system will be synchronized with respect to the module outputs at this point in
ume. The voter must wait for at least a majority of the outputs before it can decide on the correct voted
output. so at least a majority of the modulcs must reach the synchronization point before the vote. If the voter
docs not wait for all the modules to generate outputs . but only a majority. then this is called a point of partial

synchronization.

The amount of work done between votes can be small (a few instructions) or large (thousands of
instructions). The trade-off in determining the voting frequency is throughput versus reliability.  As the
frequency of voting is increased, the overhead duc to voting becomes greater. This decreases the throughput,

but will increase the reliability. In gencral, a TMR system can tolerate one crror between votes. However,

there is a probability that two errors will occur between votes. The assumption will be made that the system
can not recover from two such errors. Given an error rate, the system should vote frequently enough so that
. no two errors arrive between votes, A task to be performed will take longer to exccute as the granularity of

voting is decreased, due to the overhead introduced by cach vote. The probability of two crrors occurring
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between votes will decrcase as the granularity decrcases, until the voter exccution time dominates the total
exceution time. Any tfurther decrease in granularity will have litde effect on the probabiliny of two crrors
occurring between votes, but the total task exccution time will continue to incrcase.  Pherefore, the
probability of a system tailure sometime during the task execution will increase. As the voter takes a larger
percentage of the total execution time. the voter becomes the module that is more likely to fail. The system

rehiability decreasces if the granularity is decreased past this point.

There are many issucs invoived in choosing the amount and kind of data to be voted on by the voter. One
of the first decisions imade in designing a NMR system s to choose the data to be voted on. Systems can be
designed that would vote on the actual data used in 2 module, The actual data would include processor state
that is unimportant to the value of the outputs. For example, if a program is rclocatable, then the program
counter may be ditferent for cach processor.  The results produced by the program will, however, be identical.
In a system that votes on actual data. the programs being executed must all be placed in the same memory
space. and the programs have no flexibility in independently choosing any parameters. .\ more flexible

system might allow modules t act independently. only voting on the parameters that atfect the outputs,

Once the data has been passed to the voter, the voter has some options on how to determine the majority.
The voter could choose to compare bits, words, or an entire array, The tvpe uf daca to be compared is called
the data granularity. The choice of data granularity makes a difference in system reliability. If the data is
voted on bit-by-bit. it is guaranteed that a majority will be found. There are only two possible values and one
will be the majority.  If a majonty of the bits arc in crror then the voted value will be incorrect. If a larger
data granularity is chosen. for example an n-bit word. then the voter can reach three decisions. All three can
agree on the value, two can agree on the value, or all three can disagree. In this case. the detectability of errors
is improved, since the probability of having two incorrect words that agree is less than having two incorrect
bits that agree. Word voting is less likely to produce an incorrect answer which may cause catastrophic errors
in other modules. The voter can detect when all three disagree, and a recovery routine can decide how to
handle the faults. Even though the voter provides no answer. this is preferable to providing the wrong
answer. If the data granularity is increased again. then the probability that two incorrect data values agree is
decreased. If an entirc array is compared to two other arrays. the probability of having two faulty but cqual
arrays is smaller than the probability of having two faulty but cqual words. The array could zontain two
correctable errors. yet the voter would not correct either because the data granularity is farge. The ideal value
of the data granularity should be when the probability of having two correctable crrors in the data cquals the
probability of having two incorrect data values agree. A small data granularity allows the voter to correct
many ecrrors, and a Jarge granularity reduces the probability of allowing incorrect data to pass the voter. A

voter could obtain better detectability and correctability by using a small data granularity to correct errors and




Voting Concepts !

a4 large data granalarits o detect errors, This voter would, howeser b agreater exceution ume than a

sinple voter.

Generally, software voters do not vote bit-hy=hit, since processors are designed to handle byies or words
better than bits. 1 the three words passed to the voter are XY, and /7. then the combinatorial majority vote
15 defined as:

C=XY+\/+VY/
It the values of XY and 7 are words. then a bit-wise vote will proceed in parallel for all n bits v the word.
I'he zencration of the voted data value with this method takes just three bit-wise AND operations and two
bit-wise OR operations. The comparison voter that is popular in many <oftware yolung svstems requires at
least three comparisons, and two branches.  The combinatorial majority voter has straight in-line code that
could be pipelined on a special purpose machine to improve performange, where the companson yoLer can
not be pipelined. The combinatorial majority voter therefore requires fess execution ame than the classical

comparison voter, and increases the probability of correcting independent errors.

In addition 0 choosing the data granularity. other parameters of the data must be chosen. It may be
desirable to vote on some abstract data structures. to determine if the data they contain is equal. Some
interesting problems arise. duc to the nature of some data syructures. For example. a linked list dawa structure
may be passed to a voter by three modules. The voter should vote on the data in the linked list. but should
not vote on pointers o datz items. The tists should have the same structure. and the same data. but not
necessariiy the same pointers. This procedure requires an intelligent voter, with knowledge of linked lists, and
with knowledge of the storage format. Other interesting data structures, such as queucs or stacks could be
used as inputs to the voters,  Abstract data structures are commonly used in high level programming
languages. so the voters should be able to handle them. An NMR system should attempt to accommodate the
programmer, not the other way around. Although no systems provide abstract voting vet. as more
applications arc written for NMR systems, the programmers are going to discover the advantages of having

voters that can handlc abstract data.

3. Experimental Paradigm

The two types experiments performed use a similar paradigm. The paradigm can be viewed at the highest
level as the exceution of a single task. The task to be performed is broken into cqual subtasks. Fach subtask
is exccuted in order, with data being passed from onc subtask to the next. It is assumed that cach subtask has
the exact same exccution speed. and that only one word of data is passed from onc subtask to the next. Since
the subtasks all have the same exccution speed, the task can be simulated by a loop that executes n times with

a synthetic workload that takes subtask, time inside the loop. Figure 3-1 shows the partitioning. Each subtask

i




TR p— PR
Experimental Paradigm
Subtask 1
Y
Subtask 2
\ 4

TASK

. - cnm——

—_» ‘v _——D Subtask

Subtask n

Figure 3-1; Expenment lask Partitioning
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is triplicated, and a votc occurs on the data passed between subtasks, yielding the structure in Figure 3-2.

The triplicated subtasks all perform the same function. They will calculate the i data value. send a copy of
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the data o cach voter, and recenve the voted value of the data from the associated voter. The new data value
i then used i calculating the ¢+ DY data vatue.! The tme cach subtask tkes 1o calculate the # duta value
s an experimental sanable. Al of the triplicated subtasks will have a variable execution ume.  This tine is set
by the granularity of the subtask. which s detined as the number of operations cxecuted between voltes not
mcluding the overhead due w voting.  An operation is four 1.5:-1 1 instructions.  The granularity of cach

subtask can be set betore an experiment.

The voter subtask is also triplicated. as shown in Figure 3-2. Fach subtask sends each voter two data words.,
I'he first data word is a sequence number to assoctite data with an iteration. The second word is the data to
he compared by the voter. When a voter has recenved data from a majority of the subtasks (1wo). it checks to
see if the data values agree. It so. then a majority vote has been achicved. and the data value is sent to the
subtask associated with this voter. If they do not agree. then the voter waits for the data value from the third
subtask to determine the correct value, which is sent to the associated subtask.  Fach voter and subtask is

assigned its own processor. so cach voter proceeds with the voting in paraliel with the subtask exccution.

Three types of voters are used in the experiments.  The first voter, culled the simple voter. is a
synchronizing voter. 1t requires the subtasks to reach a full point of synchronization after cach subtask
iteration. It has no internal storage of data from one iteration to the neat. The second voter, called the
internal queue voter. has an internal qucue that allows it to handle data from different iterations.  The
subtasks arc not required to fully synchronize after cach iteration. This voter has been optimized for high
cxccution speed in the average case and thercfore has the shortest exccution tme. The third voter. called the
sequence number voter, uses the sequence numbers that are sent by the subtasks. so that the voter can order
data bascd on the subtask iteration. This voter has the longest exccution time. All three voters were designed

to allow casy expansion to N-way voting. The algorithms for the voters are presented in Appendix 1.

As long as the subtasks have similar exccution speeds. the voter should receive the # iteration from cach
subtask at approximately the same time. ‘The scquence number voter and the internal queue voter do not
requirc a full point of synchronization, so if onc subtask is slower than the other two then the voter may
reccive the (i+ 1)¥ data valuc from a fast subtask before the slow subtask sends the # data value. Since the
vater now has data from two different iterations, it must be able to distinguish which data is associated with
which iteration. and from which subtask. A voter queuc is uscd to maintain this database. Each row in the

qucuc contains information about;

1Onc can imaginc wanting to pass more than one data value from one subtask to the next. This can be done with a more complicated
voter The entire state of a processor (or sclected parts) could be passed as data, allowing a faulty processor to recover from a transient by
accepling the voted state as its new state. Adding this capability to the experiments would complicaie them without yiclding additional
information about the voting.

A




10 Experimental Paradigm

1. which wcratton this row represents.

Fl

2o whether data has arnived trom cach source subtask.

3. what the data valuc s from a source subtask (if it has arrived).

The column the data s stored in imphicitly Wdentifies the associated destination subtask.

The sequence number voter then scarchs for an iteration number in the voter queuc to find the row where
the data for this subtask belongs. 1t the iteration number is not found in the queue, a row for this iteration is
placed n the queuce and the data is placed in the row. When all of the data values for a particular row have

arrived. the voter reports any errors found while voting and then removes the row from the queue,

The voter queue has a fintte maximum length. If one subtask has not sent any data to the voter in the same
period in which the other two subtasks have sent many data messages. the voter queue could conceivibly
become tull. The voter handles a full queue by removing the oldest row (associated with an iteration for
which all the data has not arrived) from the queue and adding a row associated with the new iteration
number. Errors are reported on the row removed from the queue. The maximum length of the queue can be

large. so that the queue will never become full in experiments.

4. Voter Overhead Experiments

In any N-modular redundancy (NMR) system, the amount of useful work done will be less than the
corresponding non-replicated system.  The voting that is done in 2 NMR system will introduce some
overhead that will reduce the system throughput. The overhecad will be made up of many different
components, including the communication time between modules and the time required by the voters to
reccive messages and find the majority. In this section. voting overhead is discussed and a model is developed

to describe voting overhead.

In order to develop a model for voting overhead onc must determine a method for representing overhead,
and must determine what parameters affect the overhcad. One possible representation for overhead is in
additional opcrations executed per unit time (operations/second) duc to redundancy. The actual throughput
is thc number of subtask operations performed per unit time. As the actual throughput gocs down, the

overhead goes up. Mathematically:
Overhead= Non redundant Throughput— Actual Throughput 1)

In this section, the actual throughput is determined., and the overhead can be calculated from the above

cquation. The non-redundant throughput is a constant for a given system,
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Voter Overhead Experiments 1

Fach subtask is exceuting an instruction sequencee iteratively.  Since cach iteration is identical. the total
overhiead is the number of iterations times the overhead for one iteration. A subtask performs work for each
ieration and the amount of work is called the granularity, (. Since the totdl amount of work to be performed
is a constant. W, then the number of subtask iterations, /7, is:

1=W/G or W=1IG (2)
In other words. if the total work is 100 units, and § units are performed per itcration, then 20 iterations must

be perfurmed.

As an experiment is performed. the total execution time is measured. The execution time. ;. is the time
from when a subtask begins the first iteration untl the subtask finishes the last iteration.  The Throughput, 7.
thercfore is:

T=W/tp (3)
The total time, ¢4, can be cxpressed as:

L= e gy Tota! mumber of instructions 4)
where ¢,_ . is the average instruction exccution time, and

Total number of instructions= I-{a- G+ k) (5)
where g is the number of instructions cxccuted by a subtask when G=1 and k is the total overhead per
iteration, including voting. Thercfore from Equations 4 and §

1= li=gye 1@ G+ k) (6)

From Equations 2 and 3.
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The throughput, then, is inversely proportional to the average instruction cxccution time, the number of
instructions per subtask iteration, and the number of overhead instructions over the Granularity (k/G). The
values of &, ;- 40 and u are experimental constants, so we can plot the throughput versus the granularity, For

typica' values of &, 1,2 4y and a (k=800, 1, 4,,=6.5us. a=4), the curvc is shown in Figure 4-1.

The previous overhcad model is both general and accurate.  Although sclection of the value of k (the

subtask overhead per iteration) is difficult, a carcful approximation to & can be found,

Cm*® was uscd as the experimental vehicle. The Voter and Subtask software routines were triplicated and

each placed on their own processor. The number of iterations, /, and the granularity, G, were varied during
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Figure 4-1: Predicted Voting Overhead

the cxperiments. The exccution time, {7, was recorded for cach set of values of 7and G. The total work done,
W. was kept constant by chosing a value of / and calculating the value of G. The value of W was chosen to be
16.384 operations. The throughput was calculated for cach exccution time. All three types of voters described
previously were used in this experiment. From the overhead model is can be seen that changing the type of
voter should only affect the value of & in Fquation 7. The throughput versus the granularity is plotted for
various voter changes in Figure 4-2. Fven when the voter is changed significantly, the change in throughput

scems to be small.

The modecl is extremely accurate in predicting the overhead in a system. Onc problem with the model,
hinted at carlicr, is the difficulty in finding values for the constant £. The value should be predictable by
adding the instruction exccution times in the Subtask and the % _ier, but some of the nstructions used do not
have predictable exccution times duc to factors like system load. In addition, some of the voting and subtask
exccution arc performed in parallel, so instruction counts would give an upper bound on . but not an

*accurate value. The amount of parallelism is difficult to quantify without scriously perturbing the

experiment.  Thercfore, the value of k used in Figure 4-1 was estimated using cxperimental results. The
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Figure 4-2:  Actual Voting Overhead for Various Voters

comparison of the predicted and actual curves, however, loscs credibility since the values of k for the

predicted curves must be experimentally determined.

The value of k can be given an uppcf bound for the non-crror case. The upper bound will change as the
voter changes. but for any given experiment the upper bound can be determined. For the optimized voter
and subtask cxperiment, this upper bound has been found by adding the instruction cxecution times for the
subtask overhead and the voter time. The actual value of & will be less than this time because the voter will be

exccuting simultancously with the subtask., An upper bound on 4 is approximated by:
kmax = Ks=max t Kyemax
where ke, is the maximum subtask contribution to & and &, ., is the maximum voter contribution to k.

By analyzing the p1. srams written for the experiments, it is found that:

K max=08 in .. ctions+3 Sends+1 Receive

Kymmax=1237 ins: uctions+ 3 Conditional Receives+ 1 Send

The execution times for sends and receives on Cm* Medusa are given in [12). The average exccution time for
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14 Voter Overhead Fxperiments

LSI-11 instructions in the voter and the subtask was determined to be 6.5us. Using thus information. kg, i
determined.

Ky mar == 333 1.S1-11 instructions
Ky may =471 1.S1-11 instructions

A <333+471 =804 1.SI-11 instructions (8)
Similarly, the lower bound can be approximated by:

Kye pun =08 instructions + 3 Sends+ 1 Receive

Kymmun= 127 instructions + 2 Conditional Receives+ 1 Send

Kmun= Maxt K K s~ min)

k 2333 1.S1-11 instructions 9N
tguation 9 assumes maximum simultancous execution of the subtask and the voter. The expenments with
the optimized voter yvielded values of & between 350 and 712, These expenimental results fall between the
minimum and maximum theoretical valucs calculated above. The bounds should be recalculated if the voter
or subtask is changed. Figure 4-3 compares the minimum and maximum predicted cunves, and an
experimental curve (for the optimized voter). One result that the modet docs not take into account is that the
value of & changes as the Granularity changes. During the optimized voter experiment, the value of & varied
by over 350 nstructions.  1his is due to the change in Toad on the Kmap processors as the Granularity
changes. The model assumes that the value of & stays constant throughout the cxperiment. In spite of these

deficicncices. the overhead model doces give accurate predictions of expected voting overhead.

S. Voter Queue Length Experiments

In an asynchronous NMR computer system, the processors will have their own clocks and will make little
or no cffort to synchronize the clocks with cach other. The random vanation in clock speed and the
difference in process exccution patterns will cause differences in the arrival umes of the data to be voted on
by the voters. The voters should be able to receive data asynchronously so that they can vote on the data
when a majority of the processes have sent it. The voters must be able to store message values so that one
processor can be calculating the 107 step in a procedure while another processor can be working on the 127
step. Eventually both processors should finish the procedure but as long as no data dependencies exist. one
processor should not be forced to wait for another to finish a calculation. Even when data dependencices do
exist, when a majority of the processors agree on the value of a step, there is no reason to wait for the rest of

the processors to finish before continuing with the next step.  In fact, waiting can reduce reliability if a
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Figure 4-3: Comparison of Actual and Predicted Voting Overhead

processor is faulty since it may never respond to the voter, There should, however. be a limit to the amount a
processor should be allowed to fall behind before it is considered faulty. The random variation may cause
problems if onc processor becomes hopelessly behind due to the variation.  Experiments have been
performed to discover the nature of how variations in process exccution speed affect the amount a process
falis behind the others. The effects of variation in process exccution speed. as well as variation of the number

of instructions cxccuted between votes have been examined.

Three cxperiments have been performed.  Fach is designed to cxplore a different arca of the
synchronization probiem. Experiment one has a single process exccute more instructions for cvery step in the
experiment. This process is continuously slower. This experiment shows that the voter overhicad increases as
the slow process falls behind. Experiment two has one process slower for a period. followed by being faster
for a period. Experiment three has one process slower for a period. followed by a period of normal speed.
This experiment is realistic for many systems, since processes are likely to fall behind in a system but are not

likely to speed up.
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16 Voter Queuce |.ength Experiments

5.1. Experiment One

The first experiment performed was designed to measure the ability of the vower to synchronize the
subtasks when one subtask is continuously slower than the other subtasks.  The frequency of voting (or
granulanty of the subtasks) was varied. and the exceution speed of one subtask was varied. The queue lengths
of the voters were recorded as a measure of how far the slow subtask fell behind the two faster subtasks. The
slower subtask performed 10% to 50% more operations in calculating the next value. ‘The slower subtask
represents a process that requires more exccution time due to an instruction retry, or due to an interrupt that
it must handle. In these situations. one subtask will be temporarily slower: but as these experiments show, it
would be ill-advised w design a system where one subtask was continuously slower (this experiment shows
design constratnts for systems that have one continuously slower subtask). FFach voter recorded the fength of
the voter queue every time a new iteration was reccived. The queue length information was sent as a message
to a proccss that stored the data in a file. The recording of the queue length added some overhead to the

voter, but cach voter paid the same cost.

The queuc length was plotted versus the iteration number for two different granularitics and various
subtask degradation as shown in Figures 5-1 and 5-2. For granularity equal to 1024 operations. one subtask
can be up to 10% slower and the queuc length stays at one.  This implics that the voter overhead is great
cnough so that the differences in speed are masked. For larger differences in speed. the queuc length grows
to a value and then levels off. The queue length is bounded due to an increase in voter execution time as the

qucue length increases. The voter must scarch for the iteration number in the queuce and the scarch proceeds

lincarly. The subtask that is slower will not pay this overhead cost since it has n-/ messages waiting for

processing, where nis the queue length.

As the granularity increases, the queuc length grows more rapidly. With granularity cqual to 1024 (Figure

5-1). the 10% to 40% additional opcrations curves appear to be bounded but the 50% additional operations

curve is not bounded. The curves for granularity cqual to 16.384 (Figurc 5-2) do not appear to have a
bounded queue length. This is due to the fact that the voter overhead takes a smaller percentage of the total
execution time for the larger granularity cases. The voter overhead is a fixed value for a specific queuc length.
When the slower subtask takes approximately the same amount of time as the voter. then the voter overhead
18 significant in comparison to the subtask exccution time. While the normal subtasks are waiting for the
voter to generate a voted data value, the slower subtask can be calculating a data value for one of the old

messages (when the queuc length is greater than onc, the slower subtask will have data values to calculate for

all the messagces in the queue).
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5.2. Experiment Two

The second experiment is a variation on the first expernment and was designed to eaplore the synchronizing
nature of voters more fully.  In this experiment. one subtask s slower than the other two subtasks by a
pereentage tor a period of time. then the same subtask is faster than the other subtasks for the same period.
Fhe period was chosen to be 20 iterations.  For example, subtask A will perform 10% more operations in
calculating the first 20 data values, followed by performing 10% fewer operations for the next 20 iterations.

Subtask A will therefore spend 10% more time exceuting the first 20 iterauons than the second 20 iterations,

While the subtask is operating slower, the queue length should behave exactly the same as in cxperiment
one. Once the subtask is faster than the others, this subtask should quickly catch up resulting m a decline in
the queue fength. The rate of decline in queuc fength should be greater than the rate of increasc. since when
the queue has Tength greater than one the subtask being varied does not have to wait for the voter to finish

before beginning the next data value calculation.

The first plot of queug length versus iteration number with granularity equal o 1024 (Figure 5-3) shows the
expected result. The queue length increases when subtask A is slower and the rate of increase is the same as
that from experiment one. As soon as subtask A begins exccuting fewer operations per iteration. the queue
length declines rapidly. reaching queuc length equal to one. If the granularity is increased o 16.384 (Figure
5-4) then the queuc length is not restored to one. and there is a net increase in the queuc fength over time.

The queuc length increases because subtask A will be spending more time executing the long calculations.

5.3. Experiment Three

The third cxperiment is similar to experiment two. except it represents a more realistic class of
synchronization problems, A subtask that is performing a calculation may experience a temporary slowdown.
followed by a period of normal behavior such as a subtask which has to perform a recovery routine because of
a bus error or has to perform a one time operating system task. Is the processor running the subtask doomed
to stay behind. or will it eventually catch up cven though it always takes as long to calculate a new data value
as the others? As soon as a subtask falls behind. it no longer pays the overhead cost since it has messages
qucucd up waiting for processing. This fact would imply that a subtask can catch up. and the rate at which it

catches up is the incremental voter overhead cost per iteration,

The cxperiment can be described as follows: onc subtask will do additionat operations (10% to 50%) for 20
iterations followed by a period of normal behavior (performing the same number of operations as the other
subtasks). The results of the experiment are shown in Figures 5-5 and 5-6. It can be seen that during the

periods of normal operation for all three subtasks, the queue length declines, and given a long cnough period
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of normal behavior would reach one. The rate of decline of queuc length during normal subtask behavior

indicates the effect of voter overhead on the subtasks.
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5.4. Experimental Conclusions
Ihe three experunents pertormed give a clear picture of a synchronization model for the equal subtasks

paradigm. There appear 1o be two fuctors myvolved in the model. The factors are:

1. There is a minimum voter overhead that is due to the time required by the voter to receive a
message. handle the data, and vote on the data. The subtasks that have a qucuc length or one
must pay this overhead cost every iteration of the experiment.

2. The overhead cost increases as the voter queuc length increases due to an increase in the data
handling cost. 'This factor would indicate that for a long ¢nough gucue, the voter could mask any
difference v process specd.  For practical queue lengths, though, the increase in voter overhead
masks only some of the subtask speed variation.

The synchronization experiments can give some design principles for TMR asynchronous voting systems.
Ihese principles can be applied to optimize the voter queuc length. to choose a subtask zranularity. and to
! determine the amount of process speed variation allowed in a design. Proper application of the principles will

lcad to a design that will have a bounded queuc length for all possible variations in process execution rate.

|
!
! The principles can be summarized as follows:

i 1. Smaller granularity subtasks have a higher probability of having a bounded qucue length.

t9

. As subtask granularity increases, the random variaticn in process speed becomes increasingly
. important in cnsuring a bounded qucue length.

3. Greater voter overhead allows a greater variation in process exccution rate.  This yields an

‘ interesting trade-off in voter design. since a faster voter process will increase system throughput
- but will decrease the amount of variation permitied in process ¢xccution rate.

These results can be generalized for synchronous voting, as well as asynchronous voting. If the maximum

voter length is fixed at one, then the system is synchronous like SIF1[2]{3][4] and C.vmp [8]{11]. Both of
these NMR systems usc a synchronous voter with queue length of one. C.vmp has a hardware voter with a
built in wait feature. ‘T'he length of the wait corresponds to the voter overhead in these cxperiments. SIFT
uscs fixed scheduling. so a vote procceds when the next time slot begins, The voter overhead corresponds to
the design margin in the fixed schedule (the time between the end of the process exccution. and the end of the

time slot).
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5.5. Synchronization Modeling
Phis section will present o model of the voter gqueue lensth based on 2ranulanty. pereent difference
subtask cxecution speed. and tme. The model s compared w the actual cxperimental results, but tist the

relauonship between the model and the TMR expermment should be eaplained.

5.5.1. Queue Length Models

he MR system explained in the presious section has queues that contain the mgessages bemg passed
hetween the subtasks and the voters. Fach voter has three queues in which to recenne moessages, and cach
subtask has one queue in which to receive messages. The subtask message gueue can be wiewed in the iight of
general quewing theory.  The queue will have a birth rate. A and a death rate. g Basic gqueumng theory
assumes that both A and pare constant. Also. the birth rate must be less than the death rate so that the queue
iength will be hounded. The senvers of the gueue have a utilizaton of A/w. The wtihization wiii ~¢ lew than
one, There are two problems with using a simple gueuing mode! for voter sanchronmization. The. are nat the
hirth rate. AL is not constant and that the birth rate s not less than the death rate for mest o the axperments
performed (the queue length grows, theretfore A is greater than w) - Inospite of iese probivms 4 guoing

mudcl can be developed.

Before a queuing model is presented. some background analysis of the previous section’s data will be done.
Experiment one. in which ong subtask was continually slower, will be used 1n descloping the model of queue
behavior. Fach experimental curve in the previous section begins to peak as time proceeds. The queue length
grows less rapidly as the queue length increascs. The gueue length appears to approach some bound that is
dependent on the granularity und the difference in execution speed. Some curves have observable bounds.
The information from all the cxperiment one curves presented could be summarized if this bound
information could be collected. If the queue had a maximum possible value, then cach curve cither remains
belew the maximum or rises above the maximum. If a curve has a maximum value greater than the
maximum qucuc length. then the queue will overflow during the experiment. and is unhounded by this queue
length. Otherwisc, the curve is hounded by the queuc Iength. For three different maximum values of the
qucuc length. the bounded regions and unbounded regions arc shown in Figure 5-7. In designing a system,
the maximum qucue fength can be chosen. and this will determine the acceptable granularitics and subtask
execution speed differences to prevent the aucue from overflowing, The curves that determine the regions

appear to be lincar on the log versus log scale. That implies that:
log, Granularity+ log, PercentDiffercnce= constant
thercfore,
Granularity X PercentDifference = constant = VoterQverhead

This result indicates that for a given queuc length, the granularity of the subtasks is inversely proportional to
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the pereent difference in processor speed. The constant is a number of operations which s dependent on the
voter overhead. A first approximation would equate this number of operations to the voter overhead for one
iteration. The voter overhead is constant along a boundary separating the boundced and unbounded regions.
A subtask can be constantly slower by a number of operations (the voter overhead) and sull only fall some
constant number of iterations behind the other subtasks. Next, the value of the bound can be determined for

any granularity and percent difference.

From the experimental data, the xalué of the voter overhead per iteration (the number of operations slower
onc subtask may be and not fall further behind) can be plotted against the bound on the qucue (the
maximum qucuc Iength). Figure 5-8 shows the data. A lincar lcast squares fit was determined for the data.
This equation can predict the maximum qucuc length for a given granularity and percentage difference in

subtask speed. The cquation is:

MaximumQueuel engti( AN =0.0457 VoterOverhead— 4.0 (10)
or
VoterOverhead=21.0-M+92.2 (11)

Fquation 10 is fairly accurate in predicting the bound on the qucue, but some of the variation in the data
remains uncxplained. Equation 11 can predict how much variation in subtask exccution speed is allowed
given a maximum qucue length. Note that even when the maximum queue length is zero (a totally

synchronous voting system), some variatior in subtask exccution speed is allowed. In fact, this model
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indicates that onc subtask can be constantly 92 opcerations slower and never fall behind. This is the minimum
voter overhead. the time the voter takes to process two inputs. 'This overhead is one componcent of the value

of & presented in Section 4.

5.5.2. Queuing Theory Model

A subtask that has a slower exccution rate than the two other subtasks will fall behind in executing cach
subtask iteration. For every iteration the slow subtask 18 behind. the subtask queue will contain a message.
The queuc length will grow as long as the subtask cxecution rate is greater than the voter execution rate. In
the previous section it was shown that the voter exccution time is dependent on the length of the queue. In
fact. as the quecue length grows, the voter takes longer to execute. This will result in a decrecasing growth rate
for the subtask message queue. Now a model can be formalized.

I = the qucuc length

A(/)= the birth rate, a function of the queue length
u = the queuc death rate

if %’—)—- > 1 then the queue grows

when M‘-‘Ll- =1 then the queuc length is in stcady state

A(L)=p=gL)= the growth rate of the queuc length
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aD)=x(M-=-1)

Y/ = maximum gucuc length in steady state
and
x= pereentage decrease in growth rate for cach unit increase in - L

I'he maximum queue Iength equation was derived in the previous subsection. Using this, the value of x

can be determined. At the start of cach experiment, the length, 7., will be sero. So.

al=xM when =0
I'is model indicites that the initial growth rate is only dependent on the maximuim queue length. and a
constant pereentage.  The growth rate is simply the slope of the curve. Since the zrowth rate can be
cxperimentally determined, the value of x can be found. The growth rate wiren / =0 was determined for a

number of the experimental curves. From this information. the value ot x was determined to be:
16

Ay =
= Granularity
['his result has no known significance, but s accurate over oll values of granularity and percent difference in

execution speed considered in the experiments.

Using the above results, the growth rate, which is simply the change in queuc length over time, can be

written .s:
_dl =26y
gal)= 7 =x(M-=-1)= Gran (M-1)
The valuc of 1. in the above equation is a function of time. so:
dl. _ =16 16 M _
G " Cran L(n+ Gran 1(0)=0

The solution to this differential equation is:

I.(l):\!(l— exp (ﬂ))

Gran
Since M is experimentully known, then the queuc length can be plotted against time. for various granularitics,

and percent differences in subtask cxecution speed.

5.6. Comparison of Model and Experiment

Five experimentally determined curves are compared to five predicted curves in Figure 5-9. The predicted
results are very similar to the experimental results. The model seems to be good at predicting the queue
length. This modecl does not, however, take communication costs into account. When the granularity is small,
the Cm* interprocess communication costs become significant causing cach subtask iteration to have a greater
exccution time. Therefore the model is not accurate for small granularities. Another problem with the model

is that it can sometimes predict a maximum qucue length too large. and at other times can predict a maximum
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Figure 5-9: Predicted Qucue 1.ength and Actual Queue length

qucuc length too small. The predictions are not consistently too high or too low. The modcl has several
derived paramceters. The value of x was found cxperimentally. and the cquation found for calculating Af is

based on a least-squarecs fit in which some points arc outlying.

The queuing model of the voter synchronization experiments can explain a large portion of the variation in
the cxperimental results.  Some of the model parameters are difficult to determine, but they can be
approximated. The comparison of the predicted and actual results shows that the model has the proper form
in order to cxplain the experimental results. By changing the modcl parametcrs slightly to account for Cm*

perturbations, the model can cxplain most of the experimental results.
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Conclusion

6. Conclusion

" This paper has explored some of the atributes of NMR computer systems. Muany features of software
voters have been explored both experimentally and theoretically,  Section 2 has presented some software
voting concepts.  N-modular redundancy has been described and the software concepts of time skew and
space redundancy have been explained.  Various synchronization issucs have been presented. including
ume-outs, points of syachronization. and asynchronous versus synchronous systems.  The frequency of voting
and the data granularity were shown to be important factors in determining the reliability of NMR systems,

Finally, a tecchnique was described to allow casy bit-by-bit voting on words of data.

In Section 4, some experiments were presented to help measure the overhead involved in software voting,
The type of voter, the voting frequency, and the average instruction exccution time were incorporated into a
model of voting overhead, The model was shown to accurately describe the experimental data and an analysis
of the programs vielded ubpcr and lower bounds on the possible overhead. The voting frequency was shown

to be the dominant factor in determining the voting overhead.,

~#Section 5 shows a number of synchronization experiments. The amount of variation in process exccution
speed that can be tolerated was determined for three different types of variation, The fength of one voter’s
queuc was measured over time te determine how far a process can fall bchin%v other processes. ‘The
qucuc length was shown to have a bound even when one process is continually slower than the other
processes. Guidelines for designing reliable NMR systems were presented. based on the experimental results,
A queuing model was developed to describe the length of a subtask’s qucue over time for any amount of
variation in process e¢xccution rate. The modcl was shown to accurately predict the experiments over a range

of valucs.

Many of the ideas mentioned in this article could be developed more fully. The reliability of asynchronous
versus synchronous systems could be explored. and the concept of time skew redundancy could be the basis
for reliability studics. The assertion was made that as the voting frequency increascs there is a point at which
the rcliability of the system will decrease. ‘This seems intuitive, yet could probably be proven experimentally

or mathematically.

-~
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l. Voter Algorithms

1.1. Simple Synchronizing Voter

Initialize
1.oop forever
Fori=1to N
Receive msg i
Classify msg
If majority found then
send msg
end For
Report errors
end l.oop

1.2. Optimized Voter with internal queue

Initialize
L.oop forever
Conditional Receive next msg
If voter buffer full then
attempt to receive missing msgs
If majority reccived then
vote
report arrors
initializc oldest msg slot
store msg
If majority arrived & not majority found then
vote
If all msgs arrived then
report
initialize msg slot
end Loop

1.3. Sequence Number Voter

Initialize
Loop forever
Conditional Receive
If illegal sequence number then
report(” illegal sequence number”)

Conclusion
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Voter Algorithms

Flse
Scarch for scg num in gueuc
If seq num found then
1f subtask alrcady sent this seq num then
report(” seq num duplicated”)

Elsc .
storc msg ‘
If majority received then ?,

vote y
If all msgs arrived then ‘?
If sct no oldest then B
report(” complete set not oldest™) f
Else !
report ]
initialize & |
3
X L |

Else if seq num not found then
If queuc full then
handle oldest msg
store msg in new qucuc slot

L

cnd lLoop
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